Section 2.4 Limits and Continuity

(1) Continuity and Discontinuity
 (2) Continuity and Elementary Functions

Continuity can be described as "uninterrupted flow." A function is continuous at a point if the **limit** and **actual value** align at that point.

Continuity at a Point

A function f is **continuous** at the point (c, f(c)) if $\lim_{x \to c} f(x) = f(c)$

A few immediate consequences of being continuous are

- (i) The limit at c, $\lim_{x\to c} f(x)$, exists.
- (ii) The actual value, f(c), exists.

(iii) There is a value L where $\lim_{x\to c} f(x) = L = f(c)$.

Discontinuities

If a function is **not** continuous at a point, it is called **discontinuous**.

Three Types of Discontinuities:

- A Removable (Hole): The limit exists but is <u>not</u> equal to the actual value. See A above. $\lim_{x\to c} f(x) \neq f(c)$
- B Jump: One-sided limits are **not** infinite and the two-sided limit does <u>not</u> exist. See B above.
- **C** Infinite: <u>Either</u> one-sided limit approaches infinity. See **C** above.

One-Sided Continuity

Left Continuity $\lim_{x \to c^{-}} f(x) = f(c)$ **Right Continuity** $\lim_{x \to c^+} f(x) = f(c)$

(Example I) Identify any points which are left or right continuous only. Identify and classify any discontinuities.

Continuity and Discontinuity - Example II

Continuity and Discontinuity - Example III

Continuity and Elementary Functions

An **elementary function** is a function of one variable which is the composition of a finite number of operations $(+ - \times \div)$, exponentials, logarithms, constants, polynomials, trigonometric functions, inverse trigonometric functions, and roots.

Elementary Functions are Continuous on Their Domain

For example, $f(x) = \log_5(x^2 + 3) - e^{\sin(x)}$ and $g(x) = \frac{\sqrt{\sin(e^x)}}{2x^4 - x^2 + 1}$.

If f(x) and g(x) are **continuous** at x = c, then

- $\cdot kf(x)$ is continuous at x = c for a constant k,
- $f(x) \pm g(x)$ is continuous at x = c,
- f(x)g(x) is continuous at x = c,
- $\frac{f(x)}{g(x)}$ is continuous at x = c provided $g(c) \neq 0$.
- If f(x) is continuous at x = g(c), then $(f \circ g)(x)$ is continuous at x = c.

Elementary Functions are Continuous on Their Domain

- Polynomials are continuous at every real number.
- Even root functions are continuous at every positive number.
- Odd root functions are continuous at every real number.
- Logarithms are continuous at **every** positive number.

- Exponential functions are continuous at every real number.
- sin(x) and cos(x) are continuous at every real number.
- tan(x) and sec(x) are continuous everywhere except for values $\frac{\pi}{2} + n\pi$.
- $\cot(x)$ and $\csc(x)$ are continuous everywhere except for values $0 + n\pi$.

Continuity - Example IV

On which intervals are the following functions continuous?

(i)
$$r(x) = \sqrt{x^2 - 2x - 5}$$

Continuous on the the open subset of the domain: $(-\infty, \frac{2-\sqrt{24}}{2}) \cup (\frac{2+\sqrt{24}}{2}, \infty)$
(ii) $f(x) = \frac{x^2 + \cos(2^x + 9)}{x - 8}$
Continuous on the domain: $(-\infty, 8) \cup (8, \infty)$
(iii) $h(x) = \frac{3^x}{\sqrt{x + 5}}$
Continuous on the domain: $(-5, \infty)$
(iv) $g(x) = e^{\frac{\tan(x)}{x}}$
Continuous on the domain: $x \neq \frac{\pi}{2} + k\pi, x \neq 0$

KUKANSAS

(Example V) Find the value of c that will make the function continuous at x = 3.

$$f(x) = \begin{cases} 2x + \frac{9}{x} & \text{for } x \leq 3\\ -4x + c & \text{for } x > 3 \end{cases}$$

Since $\lim_{x \to 3^{-}} f(x) = 2(3) + \frac{9}{3} = f(3) = 9$ and $\lim_{x \to 3^{+}} f(x) = -4(3) + c = -12 + c$, for f to be continuous at x = 39 = -12 + c. c = 21

(Example VI) Classify the discontinuities of the function.

$$f(x) = \begin{cases} \frac{x^2 - 16}{x - 4} & \text{for } x \neq 4\\ 10 & \text{for } x = 4 \end{cases}$$

 $\frac{x^2 - 16}{x - 4} = x + 4 \text{ for } x \neq 4 \text{ so } f \text{ is continuous for } x \neq 4. \text{ Since}$ $\lim_{x \to 4} f(x) = 8 \neq f(4), f \text{ is discontinuous at } x = 4. \text{ (a hole)}$ Note: If we replace 10 by 8, f would be continuous everywhere.

Limits and Continuity

Continuity:
$$\lim_{x o c} f(x) = f(c)$$

When asked to evaluate $\lim_{x\to c} f(x)$, continuity can be extremely useful! If f(x) is continuous at x = c, then the limit **must** be the actual value, f(c); this technique is known as **direct substitution**.

Keep in mind, elementary functions are continuous on their domain!

Composition Limit Law

If f is continuous at $\lim_{x \to c} g(x)$, $\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right)$ (Example VII) $\lim_{x \to 0} \sqrt{x+1}e^{\tan(x)} = 1e^0 = 1$

Example VIII

$$\lim_{x \to -1} f(x) = 3$$

$$\lim_{x \to 2} f(x) = -1$$

$$\lim_{x \to 2} g(x) = -2$$

$$\lim_{x \to 2} g(x) = 4$$

With the above information, evaluate the limit:

(iii)
$$\lim_{x \to -1} \frac{g(-2x)}{x^2} = \frac{\lim_{x \to -1} g(-2x)}{\lim_{x \to -1} x^2} = \frac{\lim_{u \to 2} g(u)}{1} = 4$$

This above is possible because $-2x \neq 2$ near x = -1.

(From Section 2.3!)