Section 2.4 Limits and Continuity

(1) Continuity and Discontinuity
(2) Continuity and Elementary Functions

Continuity can be described as "uninterrupted flow." A function is continuous at a point if the limit and actual value align at that point.

Continuity at a Point

A function f is continuous at the point $(c, f(c))$ if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

A few immediate consequences of being continuous are
(i) The limit at $c, \lim _{x \rightarrow c} f(x)$, exists.
(ii) The actual value, $f(c)$, exists.
(iii) There is a value L where $\lim _{x \rightarrow c} f(x)=L=f(c)$.

Discontinuities

If a function is not continuous at a point, it is called discontinuous.

Three Types of Discontinuities:
A Removable (Hole): The limit exists but is not equal to the actual value. See \mathbf{A} above. $\lim _{x \rightarrow c} f(x) \neq f(c)$
B Jump: One-sided limits are not infinite and the two-sided limit does not exist. See B above.
C Infinite: Either one-sided limit approaches infinity. See C above.

One-Sided Continuity

Left Continuity
$\lim _{x \rightarrow c^{-}} f(x)=f(c)$

Right Continuity

$$
\lim _{x \rightarrow c^{+}} f(x)=f(c)
$$

(Example I) Identify any points which are left or right continuous only. Identify and classify any discontinuities.

Continuity and Discontinuity - Example II

Continuity and Discontinuity - Example III

Continuity and Elementary Functions

An elementary function is a function of one variable which is the composition of a finite number of operations ($+-\times \div$), exponentials, logarithms, constants, polynomials, trigonometric functions, inverse trigonometric functions, and roots.

Elementary Functions are Continuous on Their Domain For example, $f(x)=\log _{5}\left(x^{2}+3\right)-e^{\sin (x)}$ and $g(x)=\frac{\sqrt{\sin \left(e^{x}\right)}}{2 x^{4}-x^{2}+1}$.

If $f(x)$ and $g(x)$ are continuous at $x=c$, then

- $k f(x)$ is continuous at $x=c$ for a constant k,
- $f(x) \pm g(x)$ is continuous at $x=c$,
- $f(x) g(x)$ is continuous at $x=c$,
- $\frac{f(x)}{g(x)}$ is continuous at $x=c$ provided $g(c) \neq 0$.
- If $f(x)$ is continuous at $x=g(c)$, then $(f \circ g)(x)$ is continuous at $x=c$.

Elementary Functions are Continuous on Their Domain

- Polynomials are continuous at every real number.
- Even root functions are continuous at every positive number.
- Odd root functions are continuous at every real number.
- Logarithms are continuous at every positive number.
- Exponential functions are continuous at every real number.
- $\sin (x)$ and $\cos (x)$ are continuous at every real number.
- $\tan (x)$ and $\sec (x)$ are continuous everywhere except for values $\frac{\pi}{2}+n \pi$.
- $\cot (x)$ and $\csc (x)$ are continuous everywhere except for values $0+n \pi$.

Continuity - Example IV

On which intervals are the following functions continuous?
(i) $r(x)=\sqrt{x^{2}-2 x-5}$

Continuous on the the open subset of the domain: $\left(-\infty, \frac{2-\sqrt{24}}{2}\right) \cup\left(\frac{2+\sqrt{24}}{2}, \infty\right)$
(ii) $f(x)=\frac{x^{2}+\cos \left(2^{x}+9\right)}{x-8}$

Continuous on the domain: $(-\infty, 8) \cup(8, \infty)$
(iii) $h(x)=\frac{3^{x}}{\sqrt{x+5}}$

Continuous on the domain: $(-5, \infty)$
(iv) $g(x)=e^{\frac{\tan (x)}{x}}$

Continuous on the domain: $x \neq \frac{\pi}{2}+k \pi, x \neq 0$
(Example V) Find the value of c that will make the function continuous at $x=3$.

$$
f(x)=\left\{\begin{array}{cc}
2 x+\frac{9}{x} & \text { for } x \leq 3 \tag{Link}\\
-4 x+c & \text { for } x>3
\end{array}\right.
$$

Since $\lim _{x \rightarrow 3^{-}} f(x)=2(3)+\frac{9}{3}=f(3)=9$ and
$\lim _{x \rightarrow 3^{+}} f(x)=-4(3)+c=-12+c$, for f to be continuous at $x=3$
$9=-12+c . \quad c=21$
(Example VI) Classify the discontinuities of the function.

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-16}{x-4} & \text { for } x \neq 4 \\
10 & \text { for } x=4
\end{array}\right.
$$

$\frac{x^{2}-16}{x-4}=x+4$ for $x \neq 4$ so f is continuous for $x \neq 4$. Since
$\lim _{x \rightarrow 4} f(x)=8 \neq f(4), f$ is discontinuous at $x=4$. (a hole)
Note: If we replace 10 by $8, f$ would be continuous everywhere.

Limits and Continuity

Continuity: $\lim _{x \rightarrow c} f(x)=f(c)$

When asked to evaluate $\lim _{x \rightarrow c} f(x)$, continuity can be extremely useful!
If $f(x)$ is continuous at $x=c$, then the limit must be the actual value, $f(c)$; this technique is known as direct substitution.

Keep in mind, elementary functions are continuous on their domain!

Composition Limit Law

If f is continuous at $\lim _{x \rightarrow c} g(x)$,

$$
\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)
$$

(Example VII) $\lim _{x \rightarrow 0} \sqrt{x+1} e^{\tan (x)}=1 e^{0}=1$

Example VIII

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow-1}} f(x)=3 \\
& \lim _{x \rightarrow 2} f(x)=-1
\end{aligned}
$$

$$
\begin{gathered}
\lim _{x \rightarrow-1} g(x)=-2 \\
\lim _{x \rightarrow 2} g(x)=4
\end{gathered}
$$

With the above information, evaluate the limit:
(iii) $\lim _{x \rightarrow-1} \frac{g(-2 x)}{x^{2}}=\frac{\lim _{x \rightarrow-1} g(-2 x)}{\lim _{x \rightarrow-1} x^{2}}=\frac{\lim _{u \rightarrow 2} g(u)}{1}=4$

This above is possible because $-2 x \neq 2$ near $x=-1$.
(From Section 2.3!)

